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An extended technical presentation of the ESEM model 

In the ESEM model (Asparouhov & Muthén, 2009; Marsh et al., 2009), there are p 
dependent variables Y = (Y1, ..., Yp), q independent variables X = (X1, ..., Xq), and m latent 
variables η = (η1, ..., ηm), forming the following general ESEM model:  

εην +Κ+Λ+= XY      (1) 

ζηαη +Γ+Β+= X      (2)  
Standard assumptions of this model are that the ε and ζ residuals are normally 

distributed with mean 0 and variance covariance matrix θ and ψ respectively. The first 
equation represents the measurement model where ν is a vector of intercepts, Λ is a factor 
loading matrix, η is a vector of continuous latent variables, K is a matrix of Y on X regression 
coefficients, and ε is a vector of residuals for Y. The second equation represents the latent 
variable model where α is a vector of latent intercepts, B is a matrix of η on η regression 
coefficients, Γ is a matrix of η on X regression coefficients, and ζ is a vector of latent 
variables residuals.  

In ESEM, η can include multiple sets of EFA factors and CFA factors. More precisely, 
the CFA factors are identified as in traditional SEM where each factor is associated with a 
different set of indicators. EFA factors can be divided into blocks of factors so that a series of 
indicators is used to estimate all EFA factors within a single block, and a different set of 
indicators is used to estimate another block of EFA factors. However, specific items may be 
assigned to more than one set of EFA or CFA factors. Assignments of items to CFA and/or 
EFA factors is usually determined based of a priori theoretical expectations, practical 
considerations, or preliminary tests conducted on the data.  
 In a basic version of the ESEM model including only CFA factors (and thus 
equivalent to the classical SEM model), all parameters can be estimated with the maximum 
likelihood (ML) estimator or robust alternatives. However, when EFA factors are posited, 
further constraints are required to achieve an identified solution (Asparouhov & Muthén, 
2009, Marsh et al., 2009). In the first step, an unconstrained factor structure is estimated. 
Given the need to estimate all loadings, a total of m2 constraints are required to achieve 
identification for the EFA factors (Jöreskog, 1969). These constraints are generally 
implemented by specifying the factor variance-covariance matrix as an identity matrix and 
constraining factor loadings in the right upper corner of the factor loading matrix to be 0 (for 
the ith factor, i-1 factor loadings are restricted to 0). Consider any m x m square matrix (m = 
number of factors), a square matrix that we refer to as H. In this (mxm) square matrix H one 
can replace the η vector by H η in the ESEM model (1-2) which will also alter the parameters 
in the model as well; Λ to Λ H−1, the α vector H α, the Γ matrix to H Γ, the B matrix to 
HBH−1 and the Ψ matrix to HΨHT. Since H has m2 elements, the ESEM model has a total of 
m2 indeterminacies that must be resolved. Two variations of this model are considered; one 
where factors are orthogonal so that the factor variance-covariance matrix (Ψ) is an identity 
matrix, and an oblique model where Ψ is an unrestricted correlation matrix (i.e., all 
correlations and residual correlations between the latent variables are estimated as free 
parameters). This model can also be extended to include a structured variance-covariance 
matrix (Ψ). 
 For an orthogonal matrix H (i.e., a square mxm matrix H such that HHT = I), one can 
replace the η vector by H η and obtain an equivalent model in which the parameters are 
changed. EFA can resolve this non-identification problem by minimizing f(Λ*) = f(Λ H−1), 
where f is a function called the rotation criteria or simplicity function (Asparouhov & Muthén, 
2009; Jennrich & Sampson, 1966), typically such that among all equivalent Λ parameters the 
simplest solution is obtained. There are a total of m(m−1)/2 constraints in addition to m(m + 
1)/2 constraints that are directly imposed on the Ψ matrix for a total of m2 constraints needed 
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to identify the model. The identification for the oblique model is developed similarly such 
that a total of m2 constraints needed to identify the model are imposed. Although the 
requirement for m2 constraints is only a necessary condition and in some cases it may be 
insufficient, in most cases the model is identified if and only if the Fisher information matrix 
is not singular (Silvey, 1970). This method can be used in the ESEM framework as well 
(Asparouhov & Muthén, 2009; also see Hayashi & Marcoulides, 2006).  
 The estimation of the ESEM model consists of several steps (Asparouhov & Muthén, 
2009). Initially a SEM model is estimated using the ML estimator. The factor variance 
covariance matrix is specified as an identity matrix (ψ = I), giving m(m + 1)/2 restrictions. 
The EFA loading matrix (Λ), has all entries above the main diagonal (i.e., for the first m rows 
and column in the upper right hand corner of factor loading matrix, Λ), fixed to 0, providing 
remaining m(m − 1)/2 identifying restrictions. This initial, unrotated model provides starting 
values that can be subsequently rotated into an EFA model with m factors. The asymptotic 
distribution of all parameter estimates in this starting value model is also obtained. Then the 
ESEM variance covariance matrix is computed (based only on Λ ΛT + θ  and ignoring the 
remaining part of the model).  
 The correlation matrix is also computed and, using the delta method (Asparouhov & 
Muthén, 2009), the asymptotic distribution of the correlation matrix and the standardization 
factors are obtained. In addition, again using the delta method, the joint asymptotic 
distribution of the correlation matrix, standardization factors and all remaining parameters in 
the model are computed and used to obtain the standardized rotated solution based on the 
correlation matrix and its asymptotic distribution (Asparouhov & Muthén, 2009). This 
method is also extended to provide the asymptotic covariance of the standardized rotated 
solution, standardized unrotated solution, standardization factors, and all other parameters in 
the model. This asymptotic covariance is then used to compute the asymptotic distribution of 
the optimal rotation matrix H and all unrotated parameters which is then used to compute the 
rotated solution for the model and its asymptotic variance covariance. In Mplus multiple 
random starting values are used in the estimation process to protect against non-convergence 
and local minimums in the rotation algorithms. 
 With ESEM models it is possible to constrain the loadings to be equal across two or 
more sets of EFA blocks in which the different blocks represent multiple discrete groups or 
multiple occasions for the same group. This is accomplished by first estimating an unrotated 
solution with all loadings constrained to be equal across the groups or over time. If the 
starting solutions in the rotation algorithm are the same, and no loading standardizing is used, 
the optimal rotation matrix will be the same as well as the subsequent rotated solutions. Thus 
obtaining a model with invariant rotated Λ* amounts to simply estimating a model with 
invariant unrotated Λ, a standard task in maximum likelihood estimation.  
 For an oblique rotation it is also possible to test the invariance of the factor variance-
covariance matrix (Ψ) matrix across the groups. To obtain non-invariant Ψs an unrotated 
solution with Ψ = I is specified in the first group and an unrestricted Ψ is specified in all other 
groups. Note that this unrestricted specification means that Ψ is not a correlation matrix as 
factor variances are freely estimated. It is not possible in the ESEM framework to estimate a 
model where in the subsequent groups the Ψ matrix is an unrestricted correlation matrix, 
because even if the factor variances are constrained to be 1 in the unrotated solution, they will 
not be 1 in the rotated solution. However, it is possible to estimate an unrestricted Ψ in all but 
the first group and after the rotation the rotated Ψ can be constrained to be invariant or 
varying across groups. Similarly, when the rotated and unrotated loadings are invariant across 
groups, it is possible to test the invariance of the factor intercept and the structural regression 
coefficients. These coefficients can also be invariant or varying across groups simply by 
estimating the invariant or group-varying unrotated model. However, in this framework only 
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full invariance can be tested in relation to parameters in Ψ and Λ in that it is not possible to 
have measurement invariance for one EFA factor but not for the other EFA factors. Similar 
restrictions apply to the factor variance covariance, intercepts and regression coefficients, 
although it is possible to have partial invariance in the ε matrix of residuals. (It is however, 
possible to have different blocks of ESEM factors such that invariance constraints are 
imposed in one block, but not the other). Furthermore, if the ESEM model contains both EFA 
factors and CFA factors, then all of the typical strategies for the SEM factors can be pursued 
with the CFA factors. 
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Selecting the optimal number of factors in exploratory ESEM. 

An important issue when an EFA or ESEM model is used for purely exploratory 
purposes is to determine the optimal number of factors required to best represent the data. 
Many criteria were proposed over the years to help in this decision such as (i) the Kaiser 
(1960; Guttman, 1954) criterion of retaining all factors with eigenvalues greater or equal to 
one (the default in many statistical packages such as SPSS), (ii) Cattell’s (1966) scree test 
which consist of plotting the eigenvalues and retaining as many factors as there are before the 
first break point in the lines; (iii) Velicer’s (1976) minimum average partial (MAP) method in 
which the minimum average of the squared partial correlation indicates the optimal number of 
factors; and (iv) Horn’s (1965; Glorfeld, 1995) parallel analysis, which consists of 
complementing the scree test with eigenvalues calculated from a set of random variables – the 
crossing point of the two lines indicates the number of components to retain. Research 
evidence clearly shows that, although most studies still tend to rely on either Kaiser criterion 
or the scree test, both of these tests tended to produce biased results and are outperformed by 
the less accessible MAP tests and Parallel analysis (Fabrigar et al., 1999; Hayton, Allen, & 
Scarpello, 2004; Henson, & Roberts, 2006; Kahn, 2006; Zwick, & Velicer, 1982, 1986). 
O’Connor (2000) developed SPSS, SAS, and MATLAB macros that allows for the easy 
calculation of these tests (see https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html). 
Unfortunately, these macros still rely on the Listwise deletion of cases with missing data on 
any of the variables. When there are missing data, we thus recommend conducting parallel 
analysis in the following manner. First, the data’s eigenvalues should be calculated from any 
statistical package allowing for full information maximum likelihood handling of missing 
data (Enders, 2010; Graham, 2009) and provide EFA capabilities. In Mplus (Muthén & 
Muthén, 2010), the focal package of this chapter as it is the only one including ESEM 
capabilities, the data’s eigenvalues are obtained by default with the EFA command (see 
chapter 4 of the users’ manual freely available online at statmodel.com). Second, O’Connor 
(2000) macros can be used to generate the random variables eigenvalues, either based on 
normal theory assumptions or on random permutations of the real data, which as the 
advantages of preserving the properties of the real data in the calculation of the random 
eigenvalues.  
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Exploring different rotational procedures with the simulated data set. 

Following Asparouhov and Muthén (2009) suggestions, different forms of rotations 
were compared, as shown in Table S1 (it should be noted that no matter which specific 
rotation is selected, the fit indices and items’ uniquenesses are unchanged). In fact, we 
compared Target rotation, Geomin rotation based on an ε value of .5 as recommended by 
Marsh et al. (2009, 2010), Geomin rotation based on Mplus defaults. The results show that the 
rotation that is apparently the most successful at deflating the factor correlations is Geomin 
with an ε value of .5. As in the current example we have the advantage of knowing the 
population parameter values, we also know that this specific rotation is also the method that is 
most accurate in relation to the real population value of .30. Deviations from this value could 
be due to sampling variation in the data simulation and to the fact that the real simulated data 
set was a longitudinal multiple group model, whereas these models are estimated on the full 
sample and on a single measurement point at a time. Another difference that is apparent from 
the examination of the results is that the relative size of cross loadings differs according to the 
rotational algorithm. However, once again it is the Geomin rotation with an ε value of .5 that 
most accurately represented the cross loadings of zero in the population generating model for 
the 1st and 6th items. Thus, we retain a Geomin rotation with an ε value of .5 for the remainder 
of this chapter. However, we emphasize that this conclusion is specific to this chapter and that 
any ESEM study should start with similar comparison before a final form of rotation is 
selected. In particular, we note that target rotation provides a useful link between CFA and 
EFA methods, as well as with Bayesian estimation methods relying on priors. In target 
rotation, a priori defined cross loadings are “targeted” to be close to 0 or some other pre-
specified value, but zero is the default target rotation method that was used in the current test. 
However, nothing precludes the use of other “target” values when working with a well 
replicated factor structure. For instance, in the present study, if we “target” cross loadings to 
be .10 (rather than 0), a value indicating that small cross loadings are expected, the results of 
this “informed” target rotation would be as effective as geomin rotation with an ε value of .5.  
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Table 3. Standardized parameters from the CFA and ESEM models.  

  CFA ESEM geomin, ε = .5 ESEM geomin default ESEM target Population values 
Item F1  F2  Uniq. F1  F2  Uniq. F1  F2  Uniq. F1  F2  Uniq. F1  F2  Uniq. 
Time 1 (CFA-Time1.inp) (ESEM-Geo.5-Time1.inp) (ESEM-Geo-def-T1.inp) (ESEM-target-Time1.inp)  
X1 .722  .478 .833 -.038 .333 .820 -.006 .333 .932 -.207 .333 .860 .000 .400 
X2  .843  .289 .690 .232 .330 .632 .282 .330 .745 .110 .330 .650 .220 .300 
X3 .742  .450 .536 .318 .461 .466 .369 .461 .564 .232 .461 .560 .300 .500 
X4   .835 .303 .139 .766 .300 -.002 .838 .300 .075 .787 .300 .250 .840 .400 
X5  .774 .401 .166 .674 .420 .041 .739 .420 .114 .684 .420 .190 .560 .300 
X6  .510 .739 -.046 .566 .700 -.146 .612 .700 -.111 .611 .700 .000 .450 .500 
Correlations .728   .439   .540   .637   .300   
Time 2 (CFA-Time2.inp) (ESEM-Geo.5-Time2.inp) (ESEM-Geo-def-T2.inp) (ESEM-target-Time2.inp)  
Y1 .737  .457 .837 -.032 .322 .827 -.007 .322 .932 -.196 .322 .860 .000 .400 
Y2  .841  .292 .698 .222 .330 .643 .265 .330 .752 .100 .330 .650 .220 .300 
Y3 .751  .436 .560 .303 .449 .492 .349 .449 .590 .213 .449 .560 .300 .500 
Y4   .846 .284 .149 .762 .300 .002 .836 .300 .087 .780 .300 .250 .840 .400 
Y5  .776 .398 .140 .704 .400 .005 .772 .400 .084 .720 .400 .190 .560 .300 
Y6  .492 .758 -.054 .551 .719 -.157 .599 .719 -.117 .595 .719 .000 .450 .500 
Correlations .709   .429   .543   .625   .300   
Note. Names of the input file in the supplementary materials are reported in parentheses; All coefficients significant at the .05 level; CFA: 
Confirmatory factor analysis; ESEM: Exploratory Structural Equation Modeling; F1: standardized loadings on the first factor; F2: standardized 
loadings on the second factor; Uniq.: standardized uniquenesses.  
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