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An extended technical presentation of the ESEM model

In the ESEM model (Asparouhov & Muthén, 2009; Maethal., 2009), there ane
dependent variable¥ = (Yi, ..., Yp), q independent variables = (X, ..., Xg), andm latent
variablesqn = (g, ...,nm), forming the following general ESEM model:

Y=v+An+KX+¢ (1)

n=a+Bn+IrrX+¢ 2)

Standard assumptions of this model are that g¢hend { residuals are normally
distributed with mean 0 and variance covariancerimd and y respectively. The first
equation represents the measurement model wheye vector of intercepts\y is a factor
loading matrixn is a vector of continuous latent variablksis a matrix ofY on X regression
coefficients, anct is a vector of residuals for. The second equation represents the latent
variable model where is a vector of latent interceptB, is a matrix ofy onn regression
coefficients,I' is a matrix ofn on X regression coefficients, anflis a vector of latent
variables residuals.

In ESEM,ny can include multiple sets of EFA factors and ClBAatbrs. More precisely,
the CFA factors are identified as in traditionalNb/here each factor is associated with a
different set of indicators. EFA factors can bediad into blocks of factors so that a series of
indicators is used to estimate all EFA factors mith single block, and a different set of
indicators is used to estimate another block of E&&ors. However, specific items may be
assigned to more than one set of EFA or CFA fac#ssignments of items to CFA and/or
EFA factors is usually determined based of a pritweoretical expectations, practical
considerations, or preliminary tests conductedhendata.

In a basic version of the ESEM model including yo@FA factors (and thus
equivalent to the classical SEM model), all pararseetan be estimated with the maximum
likelihood (ML) estimator or robust alternativesowever, when EFA factors are posited,
further constraints are required to achieve antifieth solution (Asparouhov & Muthén,
2009, Marsh et al., 2009). In the first step, acamstrained factor structure is estimated.
Given the need to estimate all loadings, a totambdfconstraints are required to achieve
identification for the EFA factors (Joreskog, 1969)hese constraints are generally
implemented by specifying the factor variance-c@mraze matrix as an identity matrix and
constraining factor loadings in the right upperngsrof the factor loading matrix to be 0 (for
thei™ factor,i-1 factor loadings are restricted to 0). Consider @ x m square matrix (m =
number of factors), a square matrix that we refesig H. In this (mxm) square matrix H one
can replace thg vector by Hn in the ESEM model (1-2) which will also alter tharameters
in the model as wellA to A HY, thea vector Ha, thel matrix to HI, the B matrix to
HBH™ and the¥ matrix to HPH'. Since H has felements, the ESEM model has a total of
m? indeterminacies that must be resolved. Two vanistiof this model are considered; one
where factors are orthogonal so that the factolamae-covariance matriXt( is an identity
matrix, and an obliqgue model whei is an unrestricted correlation matrix (i.e., all
correlations and residual correlations between |#tent variables are estimated as free
parameters). This model can also be extended tadeca structured variance-covariance
matrix (¥).

For an orthogonal matrix H (i.e., a square mxmrixa& such that HH = 1), one can
replace then vector by Hn and obtain an equivalent model in which the patarseare
changed. EFA can resolve this non-identificatioobgm by minimizing fA*) = f(A H-1),
where f is a function called the rotation critestasimplicity function (Asparouhov & Muthén,
2009; Jennrich & Sampson, 1966), typically such #mong all equivalenk parameters the
simplest solution is obtained. There are a totah@h-1)/2 constraints in addition to m(m +
1)/2 constraints that are directly imposed onthmatrix for a total of mconstraints needed



to identify the model. The identification for thélmue model is developed similarly such
that a total of rh constraints needed to identify the model are iragosAlthough the
requirement for r constraints is only a necessary condition andoimes cases it may be
insufficient, in most cases the model is identifiednd only if the Fisher information matrix
is not singular (Silvey, 1970). This method canused in the ESEM framework as well
(Asparouhov & Muthén, 2009; also see Hayashi & Matices, 2006).

The estimation of the ESEM model consists of sav&eps (Asparouhov & Muthén,
2009). Initially a SEM model is estimated using thik. estimator. The factor variance
covariance matrix is specified as an identity nxafgi = 1), giving m(m + 1)/2 restrictions.
The EFA loading matrix/X), has all entries above the main diagonal (ia.tHe first m rows
and column in the upper right hand corner of fatdading matrix,A), fixed to 0, providing
remaining m(m — 1)/2 identifying restrictions. Thistial, unrotated model provides starting
values that can be subsequently rotated into an BBAel with m factors. The asymptotic
distribution of all parameter estimates in thigtetg value model is also obtained. Then the
ESEM variance covariance matrix is computed (basdg on A A" + 6 and ignoring the
remaining part of the model).

The correlation matrix is also computed and, usirggdelta method (Asparouhov &
Muthén, 2009), the asymptotic distribution of th@relation matrix and the standardization
factors are obtained. In addition, again using tedta method, the joint asymptotic
distribution of the correlation matrix, standardiaa factors and all remaining parameters in
the model are computed and used to obtain the atdizéd rotated solution based on the
correlation matrix and its asymptotic distributigAsparouhov & Muthén, 2009). This
method is also extended to provide the asymptaiiwagance of the standardized rotated
solution, standardized unrotated solution, standation factors, and all other parameters in
the model. This asymptotic covariance is then usembmpute the asymptotic distribution of
the optimal rotation matrix H and all unrotatedgraeters which is then used to compute the
rotated solution for the model and its asymptotciance covariance. In Mplus multiple
random starting values are used in the estimationgss to protect against non-convergence
and local minimums in the rotation algorithms.

With ESEM models it is possible to constrain thadimgs to be equal across two or
more sets of EFA blocks in which the different lecepresent multiple discrete groups or
multiple occasions for the same group. This is agdshed by first estimating an unrotated
solution with all loadings constrained to be eqaeafoss the groups or over time. If the
starting solutions in the rotation algorithm are #ame, and no loading standardizing is used,
the optimal rotation matrix will be the same ashaslthe subsequent rotated solutions. Thus
obtaining a model with invariant rotate* amounts to simply estimating a model with
invariant unrotated\, a standard task in maximum likelihood estimation.

For an oblique rotation it is also possible td the invariance of the factor variance-
covariance matrix¥) matrix across the groups. To obtain non-invari#st an unrotated
solution withW = | is specified in the first group and an unrestd ¥ is specified in all other
groups. Note that this unrestricted specificatiogans thatV is not a correlation matrix as
factor variances are freely estimated. It is naiside in the ESEM framework to estimate a
model where in the subsequent groups ¥henatrix is an unrestricted correlation matrix,
because even if the factor variances are consttambe 1 in the unrotated solution, they will
not be 1 in the rotated solution. However, it isgible to estimate an unrestrict¥dn all but
the first group and after the rotation the rota#dan be constrained to be invariant or
varying across groups. Similarly, when the rotatad unrotated loadings are invariant across
groups, it is possible to test the invariance effictor intercept and the structural regression
coefficients. These coefficients can also be irardrior varying across groups simply by
estimating the invariant or group-varying unrotateddel. However, in this framework only



full invariance can be tested in relation to parerein¥ andA in that it is not possible to
have measurement invariance for one EFA factombutfor the other EFA factors. Similar
restrictions apply to the factor variance covaregniitercepts and regression coefficients,
although it is possible to have partial invariamtehe ¢ matrix of residuals. (It is however,
possible to have different blocks of ESEM factotghs that invariance constraints are
imposed in one block, but not the other). Furtheend the ESEM model contains both EFA
factors and CFA factors, then all of the typicahttgies for the SEM factors can be pursued
with the CFA factors.



Selecting the optimal number of factorsin exploratory ESEM.

An important issue when an EFA or ESEM model isduk® purely exploratory
purposes is to determine the optimal number ofofactequired to best represent the data.
Many criteria were proposed over the years to lelfhis decision such as (i) the Kaiser
(1960; Guttman, 1954) criterion of retaining alttas with eigenvalues greater or equal to
one (the default in many statistical packages aglsPSS), (i) Cattell's (1966) scree test
which consist of plotting the eigenvalues and retey as many factors as there are before the
first break point in the lines; (iii) Velicer's (¥8) minimum average partial (MAP) method in
which the minimum average of the squared partiaietation indicates the optimal number of
factors; and (iv) Horn’s (1965; Glorfeld, 1995) alel analysis, which consists of
complementing the scree test with eigenvalues tzkuli from a set of random variables — the
crossing point of the two lines indicates the numbk components to retain. Research
evidence clearly shows that, although most stustiigend to rely on either Kaiser criterion
or the scree test, both of these tests tendedottupe biased results and are outperformed by
the less accessible MAP tests and Parallel ana{fsisrigar et al., 1999; Hayton, Allen, &
Scarpello, 2004; Henson, & Roberts, 2006; Kahn,62@wick, & Velicer, 1982, 1986).
O’Connor (2000) developed SPSS, SAS, and MATLAB msichat allows for the easy
calculation of these tests (selettps://people.ok.ubc.ca/brioconn/nfactors/nfactdrsi).
Unfortunately, these macros still rely on the Listvdeletion of cases with missing data on
any of the variables. When there are missing datéathus recommend conducting parallel
analysis in the following manner. First, the dataigenvalues should be calculated from any
statistical package allowing for full informationaximum likelihood handling of missing
data (Enders, 2010; Graham, 2009) and provide E&palilities. In Mplus (Muthén &
Muthén, 2010), the focal package of this chapteiitdas the only one including ESEM
capabilities, the data’s eigenvalues are obtaingdddfault with the EFA command (see
chapter 4 of the users’ manual freely availablenenhtstatmodel.conh Second, O’Connor
(2000) macros can be used to generate the randoables eigenvalues, either based on
normal theory assumptions or on random permutatioihghe real data, which as the
advantages of preserving the properties of the dea#d in the calculation of the random
eigenvalues.




Exploring different rotational procedureswith the ssmulated data set.

Following Asparouhov and Muthén (2009) suggestiatierent forms of rotations
were compared, as shown in Table S1 (it should ddednthat no matter which specific
rotation is selected, the fit indices and itemsiquenesses are unchanged). In fact, we
compared Target rotation, Geomin rotation basedmn value of .5 as recommended by
Marsh et al. (2009, 2010), Geomin rotation basetptus defaults. The results show that the
rotation that is apparently the most successfulediating the factor correlations is Geomin
with an ¢ value of .5. As in the current example we have ddeantage of knowing the
population parameter values, we also know thatgpéific rotation is also the method that is
most accurate in relation to the real populatiolmeaf .30. Deviations from this value could
be due to sampling variation in the data simulatiad to the fact that the real simulated data
set was a longitudinal multiple group model, wherdegese models are estimated on the full
sample and on a single measurement point at a Amather difference that is apparent from
the examination of the results is that the relasize of cross loadings differs according to the
rotational algorithm. However, once again it is Geomin rotation with as value of .5 that
most accurately represented the cross loadingsrofia the population generating model for
the £'and & items. Thus, we retain a Geomin rotation wittearalue of .5 for the remainder
of this chapter. However, we emphasize that thigkssion is specific to this chapter and that
any ESEM study should start with similar comparidmefore a final form of rotation is
selected. In particular, we note that target rotagprovides a useful link between CFA and
EFA methods, as well as with Bayesian estimatiorthods relying on priors. In target
rotation, a priori defined cross loadings are “tdegl” to be close to 0 or some other pre-
specified value, but zero is the default targetitroh method that was used in the current test.
However, nothing precludes the use of other “tdrge@dues when working with a well
replicated factor structure. For instance, in thesent study, if we “target” cross loadings to
be .10 (rather than 0), a value indicating thatlsorass loadings are expected, the results of
this “informed” target rotation would be as effeetias geomin rotation with anvalue of .5.



Table 3. Standardized parametersfrom the CFA and ESEM models.

CFA ESEM geomin, g=.5 ESEM geomin default ESEM target Population values
Item F1 F2 Uniq. F1 F2 Unig. F1 F2 Unig. F1 F2 Unig. F1 F2 Uniq.
Timel (CFA-Timel.inp) (ESEM-Geo.5-Timel.inp) (ESEM-Geo-def-Tl.inp) (ESEM-target-Timel.inp)
X1 722 478 .833 -.038 .333 .820 -.006 .333 .932-.207 .333 .860 .000 400
X2 .843 .289 .690 232 .330 .632 .282 .330 .745 110. .330 .650 .220 .300
X3 742 450 .536 .318 461 466 .369 461 564 32.2 .461 .560 .300 .500
X4 .835 .303 139 .766 .300 -.002 .838 .300 .075.787 .300 .250 .840 .400
X5 774 401 .166 .674 420 .041 .739 420 114 84.6 .420 .190 .560 .300
X6 510 .739 -.046 .566 .700 -.146 .612 .700 -111611 .700 .000 450 .500
Correlations .728 439 .540 .637 .300
Time 2 (CEA-Time2.inp) (ESEM-Geo0.5-Time2.inp) (ESEM-Geo-def-T2.inp) (ESEM-target-Time2.inp)
Y1 737 457 .837 -.032 .322 .827 -.007 322 .932-.196 .322 .860 .000 .400
Y2 .841 292 .698 222 .330 .643 .265 .330 .752 100. .330 .650 .220 .300
Y3 751 436 .560 .303 449 492 .349 449 590 13.2 .449 .560 .300 .500
Y4 .846 .284 .149 762 .300 .002 .836 .300 .087 780.  .300 .250 .840 400
Y5 776 .398 .140 .704 400 .005 T72 400 .084 20.7 .400 .190 .560 .300
Y6 492 .758 -.054 551 .719 -.157 .599 .719 -.117.595 719 .000 450 .500
Correlations .709 429 .543 .625 .300

Note. Names of the input file in the supplementary make are reported in parentheses; All coefficiesggmificant at the .05 level; CFA:
Confirmatory factor analysis; ESEM: Exploratory{tiural Equation Modeling; F1: standardized loading the first factor; F2: standardized
loadings on the second factor; Uniq.: standardiz@duenesses.
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